MethaneSAT will have a wide field of view along with a high level of precision and spatial resolution to find and measure small amounts of excess methane.

Area Emissions
3,240 Gigagrams / yr

Point Source Emissions
500 kg/hr

MethaneSAT.org

<table>
<thead>
<tr>
<th>METHANE CAPABILITY</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create high-resolution emissions heatmap of area sources (or spatially distributed emissions)</td>
<td>Heatmaps of 1 km² areas across targets that are 200 km x 200 km, with a native pixel size of 100m x 400m</td>
</tr>
<tr>
<td>Quantify total regional emissions</td>
<td>Emissions from individual oil/gas fields/basins accounting for more than 80% of global oil and gas production</td>
</tr>
<tr>
<td>Automate computations used to measure emission rates, cutting a process that can take months down to days</td>
<td>Actionable emission rate data will be accessible in a few days</td>
</tr>
<tr>
<td>Broad area coverage</td>
<td>Orbit Earth in 95 minutes, with a swath width of 200 km</td>
</tr>
<tr>
<td>Point source attribution</td>
<td>Trace larger single emission events back to their point source</td>
</tr>
<tr>
<td>Quantify methane concentrations with high precision</td>
<td>Detect excess methane at 3 parts per billion (highest precision compared to satellites currently in orbit)</td>
</tr>
<tr>
<td>Transparency</td>
<td>Free public data access</td>
</tr>
</tbody>
</table>
THE METHANE SATELLITE ECOSYSTEM

A complementary ecosystem of methane satellites for addressing methane emissions globally

MethaneSAT
100 m x 400 m pixels across 200 km swath
MethaneSAT will revolutionize measurement of methane emissions by detecting concentrated point sources and dispersed area sources. It quantifies total emissions – not possible with today’s satellites – thus advancing the state-of-the-art and filling major data gaps globally.

GHGSat
30 m x 30 m pixels across 10 km swath
An industry-oriented constellation of commercial point-source satellites.

PRISMA
30 m x 30 m pixels across 30 km swath
Launched by the Italian Space Agency in 2019 it combines a hyper-spectral sensor with a high-resolution camera.

TROPOMI
7,000 m x 5,500 m pixels across 2,600 km swath
European Space Agency’s global mapper launched in 2017 on the Sentinel-5P satellite.

Carbon Mapper
30 m x 30 m pixels across 18 km swath
A point-source instrument announced in 2021 by coalition of organizations together with commercial satellite provider Planet, planned for launch in 2023.

GLOBAL MAPPING
- Global & large-scale regions
- Large point sources
- Tropomi, SCIAMACHY, GOSAT, GOSAT-2, CO2M

AREA MAPPING
- Area sources
- Point sources
- Sector-wide quantification
 - MethaneSAT

LOCAL MAPPING
- Point sources
- Facility level attribution
 - GHGSat, PRISMA, EnMAP
 - GF-5, ZY-1, Carbon Mapper
Along with the satellite, we will be flying similar instruments aboard a dedicated aircraft called MethaneAIR starting in mid-2023. MethaneAIR previously flew in 2021 and 2022 retrieving important methane emissions data. Data from these flights will be used to help refine our data analytics and augment our findings once MethaneSAT is launched.